Forensic Investigation of MP3 Audio Recordings
https://doi.org/10.30764//1819-2785-2019-14-4-125-136
Abstract
Special aspects of MP3-recordings technical investigation are addressed. The following features of formation and research of MP3 phonograms are explained: traces of MP3 coding in time and spectral domain, special aspects of MP3-files structure analysis, detection methods of re-coding of MP3-recordings, methods of group identification of MP3-recorders and MP3-codecs.
MP3 coding leaves certain traces of its usage. Due to the psychoacoustic model inaudible spectral components are deleted from the signal spectrum. Traces of psychoacoustic codecs usage are also clearly seen via dynamic spectrogram as rectangular areas of zero spectral amplitude. The methods discussed in this paper enable the investigating expert to detect the exact position of the MP3 frame in the signal by its properties even without any information from the file header. This method reveals the coding itself, multiple coding and also audio editing by the investigation of the periodicity of the extracted frames’ positions.
MP3 file format specifies the structure of the frame header providing a perfect instrument to detect any periodicity of any peculiarities of MP3 frames. The tool based on this approach reveals MP3 frames disorder caused by editing in the “digital” domain – manual deletion of audio information using HEX editor.
About the Authors
A. G. BoyarovRussian Federation
Boyarov Alexander Grigorievich – Senior State Forensic Expert at Forensic Video and Audio Laboratory
I. S. Siparov
Russian Federation
Siparov Ivan Sergeevich – State Forensic Expert
References
1. Boyarov A.G. Detection and Analysis of MP3, WMA, OGG AND VORBIS Codecs Traces in Audio Signal. Theory and Practice of Forensic Science. 2016. No. 1 (41). P. 78–86. (In Russ.)
2. Boyarov A.G. Forensic Analysis of MP3 Audio Files. Theory and Practice of Forensic Science. 2013. No. 3 (31). P. 70–83. (In Russ.)
3. Korycki R. Detection of Montage in Lossy Compressed Digital Audio Recordings. Archives of Acoustics. 2015. Vol. 39. No. 1. P. 65–72. https://doi.org/10.2478/aoa-2014-0007
4. Ho A.T.S., Li S. (eds). Handbook of Digital Forensics of Multimedia Data and Devices. Guildford: Wiley, 2015. 670 p. https://doi.org/10.1002/9781118705773
5. Maher R. Audio Forensic Examination. IEEE Signal Processing Magazine. 2009. Vol. 26. No. 2. P. 84–94. https://doi.org/10.1109/msp.2008.931080
6. Gupta S., Cho S., Kuo C-C.J. Current Developments and Future Trends in Audio Authentication. IEEE Multimedia. 2012. Vol. 19. No. 1. P. 50–59. https://doi.org/10.1109/mmul.2011.74
7. Grigoras C. Applications of ENF Criterion in Forensic Audio, Video, Computer and Telecommunication Analysis. Forensic Science International. 2007. Vol. 167. No. 2-3. P. 136–145. https://doi.org/10.1016/j.forsciint.2006.06.033
8. Bessonov A.A., Boyarov A.G., Stepanov M.V. The Electric Network Frequency Based Method of Forensic Audio Analysis. Theory and Practice of Forensic Science. 2019. Vol. 14. No. 2. P. 43– 50. (In Russ.). https://doi.org/10.30764/1819-2785-2019-14-2-43-50
9. Bykhovsky D., Cohen A. Electrical Network Frequency (ENF) Maximum-Likelihood Estimation Via a Multitone Harmonic Model. IEEE Transactions on Information Forensics and Security. 2013. Vol. 8. No. 5. P. 744–753. https://doi.org/10.1109/tifs.2013.2253462
10. Grigoras C., Smith J.M. Digital Imaging: Enhancement and Authentication. In: Siegel J.A., Saukko P.J., Houck M.M. (eds). Encyclopedia of Forensic Sciences. Academic Press, 2013. P. 303–314. https://doi.org/10.1016/b978-0-12-382165-2.00127-6
11. Huijbregtse M., Geradts Z. Using the ENF Criterion for Determining the Time of Recording of Short Digital Audio Recordings. In: Geradts Z.J.M.H., Franke K.Y., Veenman C.J. (eds). Computational Forensics. IWCF 2009. Lecture Notes in Computer Science. Vol. 5718. Berlin: Springer, 2009. P. 116–124. https://doi.org/10.1007/978-3-642-03521-0_11
12. Pan X., Zhang X., Lyu S. Detecting Splicing in Digital Audios Using Local Noise Level Estimation. 2012 IEEE International Conference on Acoustics. Speech and Signal Processing. 2012. https://doi.org/10.1109/icassp.2012.6288260
13. Malik H. Acoustic Environment Identification and Its Applications to Audio Forensics. IEEE Transactions on Information Forensics and Security. 2013. Vol. 8. No. 11. P. 1827–1837. https://doi.org/10.1109/tifs.2013.2280888
14. Ikram S., Malik H. Digital Audio Forensics Using Background Noise. 2010 IEEE International Conference on Multimedia and Expo. IEEE, 2010. https://doi.org/10.1109/icme.2010.5582981
15. Yang R., Qu Z., Huang J. Exposing MP3 Audio Forgeries Using Frame Offsets // ACM Transactions on Multimedia Computing, Communications, and Applications. 2012. Vol. 8. No. 2S. P. 1–20. https://doi.org/10.1145/2344436.2344441
16. Liu Q., Sung A.H., Qiao M. Detection of Double MP3 Compression. Cognitive Computation. 2010. Vol. 2. No. 4. P. 291–296. https://doi.org/10.1007/s12559-010-9045-4
17. Boyarov A.G. Detection and Analysis of MP3, WMA, OGG AND VORBIS Codecs Traces in Audio Signal. Theory and Practice of Forensic Science. 2016. No. 1 (41). P. 78–86. (In Russ.)
18. Korycki R. Detection of Montage in Lossy Compressed Digital Audio Recordings. Archives of Acoustics. 2015. Vol. 39. No. 1. P. 65–72. https://doi.org/10.2478/aoa-2014-0007
Review
For citations:
Boyarov A.G., Siparov I.S. Forensic Investigation of MP3 Audio Recordings. Theory and Practice of Forensic Science. 2019;14(4):125-136. https://doi.org/10.30764//1819-2785-2019-14-4-125-136