Forensic Analysis of Marijuana: Approaches to Establishing Belonging to Previously Separated Plant Mass
https://doi.org/10.30764/1819-2785-2024-4-40-53
Abstract
The article presents the results of the studies of dried and crushed marijuana using nearinfrared spectroscopy and spore-pollen analysis for solving an expert task of establishing the affiliation to previously separated plant masses. The recording of near-infrared spectra of expert samples has been carried out. The possibility of interpreting spectral data using discriminant analysis of projections on latent structures is shown. The taxonomic composition of 8 435 pollen grains and spores has been determined, as well as the quantitative content of each taxon.
According to the results of the conducted research, it was concluded that the application of a complex of independent and complementary methods allows to obtain the necessary and sufficient number of matching signs that can be recognized as unique for identification. The proposed research scheme can be also applied to other narcotics of plant origin.
About the Authors
A. N. KhokhBelarus
Khokh Anna Nikolaevna – Head of the Laboratory
of Materials, Substances and Products Research of
the Scientific Department of Technical and Special
Studies of the Scientific and Practical Center of
the State Forensic Examination Committee of the
Republic of Belarus
Minsk 220114
P. S. Voskanyan
Armenia
Voskanyan Patvakan Stepanovich – Candidate
of Chemistry, Deputy Director for Scientific Work
Yerevan 0004
A. A. Petrosyan
Armenia
Petrosyan Anna Araikovna – Head of the Soil and
Biological Expertises Department of the “National
Bureau of Expertises”
Yerevan 0004
References
1. Malabadi R.B., Kolkar K.P., Chalannavar R.K. Cannabis Sativa: Ethnobotany and Phytochemistry. International Journal of Innovation Scientific Research and Review. 2023. Vol.5. No.2. P.3990– 3998.
2. Mariotti K. de C., Marcelo M.C.A., Ortiz R.S., Borille B.T., dos Reis M. et al. Seized Cannabis Seeds Cultivated in Greenhouse: A Chemical Study by Gas Chromatography–Mass Spectrometry and Chemometric Analysis. Science & Justice. 2016. Vol. 56. No. 1. P. 35–41. https://doi.org/10.1016/j.scijus.2015.09.002
3. Leite J. de A., de Oliveira M.V.L., Conti R., Borges W. de S., Rosa T.R. et al. Extraction and Isolation of Cannabinoids from Marijuana Seizures and Characterization by 1H NMR Allied to Chemometric Tools. Science & Justice. 2018. Vol. 58. No. 5. P. 355–365. https://doi.org/10.1016/j.scijus.2018.06.005
4. de Andrade A.F.B., Salum L.B., Júnior E.F. Forensic Laboratory Backlog: The Impact of Inconclusive Results of Marijuana Analysis and the Implication on Analytical Routine. Science & Justice. 2021. Vol. 61. No. 6. P. 755–760. https://doi.org/10.1016/j.scijus.2021.09.005
5. Pattnaik F., Nanda S., Mohanty S., Dalai A.K., Kumar V. et al. Cannabis: Chemistry, Extraction and Therapeutic Applications. Chemosphere. 2022. Vol. 289. 133012. https://doi.org/10.1016/j.chemosphere.2021.133012
6. Messina G., Rovelli F., Lissoni P. A Review of On the Psychobiological Differences among Tetrahydrocannabinol, Cannabinol, Cannabidiol and Cannabigerol. Clinical Reviews & Cases. 2022. Vol. 4. No. 2. P. 1–4. https://doi.org/10.33425/2689-1069.1040
7. Englund A., Oliver D., Chesney E., Chester L., Wilson J. et al. Does Cannabidiol Make Cannabis Safer? A Randomised, Double-blind, Cross-over Trial of Cannabis with Four Different CBD:THC Ratios. Neuropsychopharmacology. 2022. Vol. 48. P. 869–876. https://doi.org/10.1038/s41386-022-01478-z
8. Poniatowska J., Panasiewicz K., Szalata M., Zarina L., ZuteS. et al. Variability of Cannabinoid Yields of Fibre Hemp Cultivars Depending on the Sowing Density and Nitrogen Fertilisation. Plant, Soil and Environment. 2022. Vol. 68. No. 11. P. 525–532. https://doi.org/10.17221/223/2022-PSE
9. Karǧili U., Aytaҫ E. Evaluation of Cannabinoid (CBD and THC) Content of Four Different Strains of Cannabis Grown in Four Different Regions. European Food Research and Technology. 2022. Vol. 248. P. 1351–1364. https://doi.org/10.1007/s00217-022-03975-3
10. Naim-Feil E., Elkins A.C., Malmberg M.M., Ram D., Tran J. et al. The Cannabis Plant as a Complex System: Interrelationships between Cannabinoid Compositions, Morphological, Physiological and Phenological Traits. Plants. 2023. Vol. 12. No. 3. 493. https://doi.org/10.3390/plants12030493
11. Saks M.J. Forensic Identification: From a Faith-based “Science” to a Scientific Science. Forensic Science International. 2010. Vol. 201. No. 1–3. P. 1417. https://doi.org/10.1016/j.forsciint.2010.03.014
12. Roman M.G., Gangitano D., Houston R. Characterization of New Chloroplast Markers to Determine Biogeographical Origin and Crop Type of Cannabis Sativa. International Journal of Legal Medicine. 2019. Vol. 133. P. 1721– 1732. https://doi.org/10.1007/s00414-019-02142-w
13. Ribeiro L. de O. P., Avila E., Mariot R.F., Fett M.S., Camargo F. A. de O. et al. Evaluation of Two 13-loci STR Multiplex System Regarding Identification and Origin Discrimination of Brazilian Cannabis Sativa Samples. International Journal of Legal Medicine. 2020. Vol. 134. P. 1603–1612. https://doi.org/10.1007/s00414-020-02338-5
14. Punja Z.K., Rodriguez G., Chen S. Assessing Genetic Diversity in Cannabis Sativa Using Molecular Approaches. Cannabis Sativa L. – Botany and Biotechnology. 2017. P. 395–418. https://doi.org/10.1007/978-3-319-54564-6_19
15. Fett M.S., Mariot R.F., Ortiz R.S., Avila E., Camargo F. A. de O. Geographic Origin Determination of Brazilian Cannabis Sativa L. (Marihuana) by Multi-element Concentration. Forensic Science International. 2020. Vol. 315. 110459. https://doi.org/10.1016/j.forsciint.2020.110459
16. NavaV., AlbergamoA., BartolomeoG., RandoR., Litrenta F. et al. Monitoring Cannabinoids and the Safety of the Trace Element Profile of Light Cannabis sativa L. from Different Varieties and Geographical Origin. Toxics. 2022. Vol. 10. No. 12. 758 p. https://doi.org/10.3390/toxics10120758
17. Zerihun A., Chandravanshi B.S., Debebe A., Mehari B. Levels of Selected Metals in Leaves of Cannabis sativa L. Cultivated in Ethiopia. SpringerPlus. 2015. No. 4. 359 p. https://doi.org/10.1186/s40064-015-1145-x
18. Abdollahi M., Sefidkon F., Peirovi A., Calagari M., Mousavi A. Assessment of the Cannabinoid Content from Different Varieties of Cannabis sativa L. during the Growth Stages in Three Regions. Chemistry & Biodiversity. 2021. Vol. 18. No. 12. e2100247. https://doi.org/10.1002/cbdv.202100247
19. Ramos M.F., Boston D., Kinney Ch.A., Coblinski J.A., Camargo F. A. de O. Sourcing Cannabis sativa L. by Thermogravimetric Analysis. Science & Justice. 2021. Vol. 61. No. 4. P. 401–409. https://doi.org/10.1016/j.scijus.2021.03.002
20. R.Z. Al Bakain R.Z.,, Al-Degs Y.S., Cizdziel J.V., Elsohly M.A. Linear Discriminant Analysis Based on Gas Chromatographic Measurements for Geographical Prediction of USA Medical Domestic Cannabis. Acta Chromatographica. 2021. Vol. 33. No. 2. P. 179–187. https://doi.org/10.1556/1326.2020.00782
21. Hurley J.M., West J.B., Ehleringer J.R. Stable Isotope Models to Predict Geographic Origin and Cultivation Conditions of Marijuana. Science & Justice. 2010. Vol. 50. No. 2. P. 86–93. https://doi.org/10.1016/j.scijus.2009.11.003
22. Calvi M., Bontempo L., Pizzini S., Cucinotta L., Camin F. et al. Isotopic Characterization of Italian Industrial Hemp (Cannabis sativa L.) Intended for Food Use: A First Exploratory Study. Separations. 2022. Vol. 9. No. 6. 136 p. https://doi.org/10.3390/separations9060136
23. McDaniel A., Perry L., Liu Q., Shih W.Ch., Yu j. Toward the Identification of Marijuana Varieties by Headspace Chemical Forensics. Forensic Chemistry. 2018. Vol. 11. P. 23–31.
24. Biedermann A., Bozza S., Taroni F. The Decisionalization of Individualization. Forensic Science International. 2016. Vol. 266. P. 29–38. https://doi.org/10.1016/j.forsciint.2016.04.029
25. Swofford H.J., Cino J.G. Lay Understanding of “Identification”: How Jurors Interpret Forensic Identification Testimony. Journal of Forensic Identification. 2018. Vol. 68. No. 1. P. 29–41.
26. BroedersT. Philosophy of Forensic Identification. Encyclopedia of Criminology and Criminal Justice / G.J.N. Bruinsma, D.L. Weisburd (eds.). Springer Science and Business Media: New York, 2014. P. 3513–3526. https://doi.org/10.1007/978-1-4614-5690-2_164
27. Ferrari M., Mottola L., Quaresima V. Principles, Techniques, and Limitations of Near Infrared Spectroscopy. Canadian Journal of Applied Physiology. 2004. Vol. 29. No. 4. P. 463–487. https://doi.org/10.1139/h04-031
28. Pasquini C. Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. Journal of the Brazilian Chemical Society. 2003. Vol. 14. No. 2. P. 198–219. https://doi.org/10.1590/S0103-50532003000200006
29. Skobeeva S., Banyard A., Rooney B., Thatti R., Thatti B. et al. Near-infrared Spectroscopy Combined with Chemometrics to Classify Cosmetic Foundations from a Crime Scene. Science& Justice. 2022. Vol.62. No.3. P.327–335. https://doi.org/10.1016/j.scijus.2022.03.002
30. Ezegbogu M.O. Identifying the Scene of a Crime Through Pollen Analysis. Science & Justice. 2021. Vol. 61. No. 3. P. 205–213. https://doi.org/10.1016/j.scijus.2020.12.002
31. MorganR.M., Davies G., Balestri F., Bull P.A. The Recovery of Pollen Evidence from Documents and Its Forensic Implications. Science & Justice. 2013. Vol. 53. No. 4. P. 375–384. https://doi.org/10.1016/j.scijus.2013.03.004
32. Morgan R.M., Allen E., King T., Bull P.A. The Spatial and Temporal Distribution of Pollen in a Room: Forensic Implications. Science & Justice. 2014. Vol. 54. No. 1. P. 49–56. https://doi.org/10.1016/j.scijus.2013.03.005
33. Blanco M., Villarroya I. NIR Spectroscopy: a Rapid-response Analytical Tool. TrAC Trends in Analytical Chemistry. 2002. Vol. 21. No. 4. P. 240–250. https://doi.org/10.1016/S0165-9936(02)00404-1
34. Asri M.N.M., Verma R., Ibrahim M.H., Nor N.A.M., Sharma V. et al. On the Discrimination Between Facial Creams of Different Brands Using Raman Spectroscopy and Partial Least Squares Discriminant Analysis for Forensic Application. Science & Justice. 2021. Vol. 61. No. 6. P. 687–696. https://doi.org/10.1016/j.scijus.2021.08.006
35. Sharma Ch.P., Sharma S., Sharma V., Singh R. Rapid and Non-destructive Identification of Claws Using ATR-FTIR Spectroscopy – A Novel Approach in Wildlife Forensics. Science & Justice. 2019. Vol. 59. No. 6. P. 622–629. https://doi.org/10.1016/j.scijus.2019.08.002
36. Rylova T.B., Kuzmenkov D.E., Khokh A.N., Prokhorova E.A. Methodology of Expert Examination of Objects of Plant Origin, Including Narcotic and Psychotropic Substances, by the Method of Spore-Pollen Analysis. Minsk: IVTs Minfina, 2019. 32 p. (In Russ.)
37. Weber M., Ulrich S. PalDat 3.0 – Second Revision of the Database, Including a Free Online Publication Tool. Grana. 2017. Vol. 56. No. 4. P. 257–262. https://doi.org/10.1080/00173134.2016.1269188
38. Gerules G., Bhatia S.K., Jackson D.E. A Survey of Image Processing Techniques and Statistics for Ballistic Specimens in Forensic Science. Science & Justice. 2013. Vol. 53. No. 2. P. 236–250. https://doi.org/10.1016/j.scijus.2012.07.002
39. Bovens M., Ahrens B., Alberink I., Nordgaard A., Salonen T. Chemometrics in Forensic Chemistry – Part I: Implications to the Forensic Workflow. Forensic Science International. 2019. Vol. 301. P. 82–90. https://doi.org/10.1016/j.forsciint.2019.05.030
40. D. San Pietro, Kammrath B.W., P.R. De Forest. Is Forensic Science in Danger of Extinction? Science & Justice. 2019. Vol. 59. No. 2. P. 199– 202. https://doi.org/10.1016/j.scijus.2018.11.003
41. Curran J.M. Statistics in Forensic Science. Wiley Interdisciplinary Reviews: Computational Statistics. 2009. Vol. 1. No. 2. P. 141–156. https://doi.org/10.1002/wics.33
Review
For citations:
Khokh A.N., Voskanyan P.S., Petrosyan A.A. Forensic Analysis of Marijuana: Approaches to Establishing Belonging to Previously Separated Plant Mass. Theory and Practice of Forensic Science. 2024;19(4):40-53. (In Russ.) https://doi.org/10.30764/1819-2785-2024-4-40-53