DOI: 10.30764/1819-2785-2018-13-1-65-70

К вопросу определения дубильных веществ в спиртосодержащих жидкостях

И.Л. Казанцева

Федеральное бюджетное учреждение Саратовская лаборатория судебной экспертизы Министерства юстиции Российской Федерации, Саратов 410003, Российская Федерация

Аннотация. Приведены экспериментальные данные о влиянии сахарного колера на УФ-спектр жидкостей, содержащих танины. Показано, что присутствие колера в спиртосодержащих жидкостях типа коньяков оказывает значительное влияние на величину оптической плотности при 280 нм, а следовательно, и на результаты количественного определения танинов в коньяках спектрофотометрическим методом. При исследовании соединений фенольной природы целесообразным представляется комплексный подход, включающий ряд методик: химическое тестирование на наличие танинов, регистрацию и анализ спектра в УФ-области, количественное определение дубильных веществ перманганатометрическим методом.

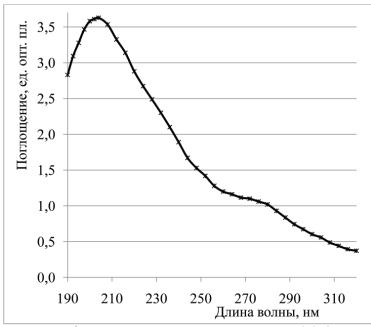
Ключевые слова: спиртосодержащие жидкости, коньяк, танины, сахарный колер, дубильные вещества

Для цитирования: Казанцева И.Л. К вопросу определения дубильных веществ в спиртосодержащих жидкостях // Теория и практика судебной экспертизы. 2018. Том 13. № 1. С. 65–70. DOI: 10.30764/1819-2785-2018-13-1-65-70.

Determination of Tannins in Alcohol-Containing Liquids

Irina L. Kazantseva

Saratov Forensic Science Laboratory of the Ministry of Justice of the Russian Federation, Saratov 410003, Russian Federation


Abstract. The paper presents experimental findings on the influence of caramel color on the UV absorption spectra of tannin-containing liquids. The presence of caramel color in alcohol-containing brandy-type liquids is demonstrated to affect optical density at 280 nm, and therefore the results of spectrophotometric determination of tannins in brandies. A comprehensive approach incorporating a range of techniques, such as chemical testing for tannins, UV absorption spectroscopy, and quantitative permanganometric determination of tannins, is shown to be appropriate for the study of phenolic compounds.

Keywords: alcohol-containing liquids, brandy, tannins, caramel color

For citation: Kazantseva I.L. Determination of Tannins in Alcohol-Containing Liquids. *Theory and Practice of Forensic Science.* 2018. Vol. 13. No 1. P. 65–70. DOI: 10.30764/1819-2785-2018-13-1-65-70.

Особая роль при исследовании качества винодельческой продукции, выдерживаемой в контакте с древесиной дуба, отводится соединениям, источником накопления которых и является древесина дуба. Это соединения фенольной и фурановой природы: ароматические альдегиды – ванилин, этилванилин, сиреневый альдегид; ароматические кислоты, появляющиеся в результате окисления ароматических альдегидов, – ванилиновая кислота, сиреневая кислота; дубильные вещества и близкие к ним со-

единения – комплекс веществ, имеющих пирогалловые гидроксилы; альдегиды фуранового ряда – фурфурол, 5-гидроксиметилфурфурол и др. [1, 2]. Качественный химический состав и количественное содержание указанных компонентов зависит от особенностей используемой древесины, способов ее предварительной обработки, условий выдержки и ряда других факторов. В связи с этим соединения, источником которых является древесина дуба, наиболее часто рассматривают в качестве основы

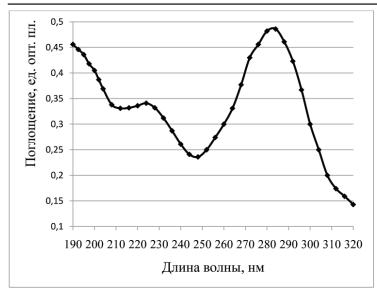
Рис. 1. УФ-спектр водного раствора танина, $c = 0.076 \, \Gamma/\Lambda$ **Fig. 1.** UV absorption spectrum of aqueous tannin solution, $c = 0.076 \, g/\Lambda$

при выборе критериев контроля качества. Так, в экспертной практике одним из показателей при проведении сравнительных исследований коньячной продукции и признаков купажа является содержание дубильных веществ. Согласно Л.Д. Беляевой и Е.Д. Козинер [3] по интенсивности поглощения при длине волны 280 нм можно судить о количестве фенольных соединений (танинов) в коньяках и тем самым оценить их возраст или условия выдержки; по поглощению в области 280 нм можно проводить и сравнительное исследование коньяков, построив предварительно калибровочный график зависимости оптической плотности от концентрации танинов. Сравнительное исследование с коньяком того же купажа, что и исследуемый, позволит обнаружить подделку (разбавление спиртом ректификатом или замену коньяком, имеющим меньший, чем обозначенный на этикетке, срок выдержки) [3].

Метод УФ-спектроскопии при анализе коньячных дистиллятов и коньяков был применен впервые в 1948 году [4], когда экспериментально было установлено, что коньячные дистилляты и коньяки обладают максимумом поглощения при 280 нм и минимумом при 250 нм; при этом максимум при 280 нм был назван «коньячным», поскольку являлся характерным для выдержанных коньячных спиртов и коньяков. Вместе с тем сахарный колер, добавляемый при купаже для создания требуемой окраски коньяков,

также обладает ярко выраженным максимумом поглощения в области 280 нм. Таким образом, представляет интерес как влияет присутствие колера в составе коньяков на УФ-поглощение при 280 нм, и, следовательно, на результат спектрофотометрического анализа содержания танинов.

Материалы и методы


Регистрацию УФ-спектров проводили с помощью поверенного средства измерения – двухлучевого спектрофотометра Evolution 300 с программным обеспечением Nicolet Evolution 300 Local Control. Предел допустимой абсолютной погрешности спектрофотометра при измерении спектральных коэффициентов

направленного пропускания — ±1 %; предел допустимой абсолютной погрешности установки длин волн — ±1 нм. Для уточнения максимумов поглощения индивидуальных веществ и образцов спиртосодержащих жидкостей регистрировали УФ-спектры в режиме Scan при следующих условиях: диапазон 190–320 нм, скорость сканирования 30 нм/мин, ширина щели 2 нм, кювета кварцевая 10 мм. В качестве раствора сравнения использовали дистиллированную воду.

Количественный спектрофотометрический анализ на содержание танинов проводили в режиме Fixed (λ = 280 нм, ширина щели 2 нм, кювета кварцевая 10 мм) по предварительно построенному градуировочному графику согласно методике [3]. Для приготовления серии градуировочных растворов использовали препарат танина с 99,8%-ным содержанием основного вещества.

Качественное тестирование наличия дубильных веществ в исследуемых спиртосодержащих жидкостях проводили по цветной реакции с хлоридом железа (III): соединения, содержащие фенольный гидроксил, дают с 1%-ным раствором хлорного железа окраску от фиолетовой до синей [5].

Количественное определение дубильных веществ также проводили перманганатометрическим способом [1, 6] с реактивами Герлеса I (150 г/л NaOH) и Герлеса II (500 г/л $Pb(NO_3)_2$). Метод основан на окислении дубильных веществ коньячного спирта 0,1 н

Рис. 2. УФ-спектр водного раствора карамелизованного сахарного сиропа с массовой долей с = 0,0064 **Fig. 2.** UV absorption spectrum of aqueous caramelized sugar syrup solution, mass fraction c = 0,0064

раствором KMnO_4 по индикатору индигокармину с учетом расхода перманганата на окисление других неокисляемых веществ спирта (нетанидов). Все определения проводили в двух повторностях.

Результаты и обсуждение

УФ-спектры индивидуальных веществ – танина и карамелизованного сахарного сиропа¹ – представлены на рисунках 1 и 2.

В УФ-спектре раствора танина максимум поглощения наблюдается при 202 нм и слабый максимум при 279–280 нм. Для образцов карамелизованного сахарного сиропа наблюдаются два максимума – при 223 и 283 нм (рис. 2), что согласуется с опубликованными данными [3].

Методика спектрофотометрического исследования соединений фенольной природы [3] предусматривает предварительное разведение исходной пробы дистиллированной водой в 50 раз. С целью выяснения влияния содержания колера на УФ-спектр жидкости готовили серию модельных растворов на основе водного раствора танина с концентрацией 0,836 г/л (далее - раствор Т) и водного раствора карамелизованного сахарного сиропа с массовой долей 0,375 % (далее - раствор К). Выбирая концентрации при приготовлении растворов руководствовались литературными данными, согласно которым количество колера в

коньяках при составлении купажа определяют опытным путем [1]; ориентировочное содержание колера составляет от 2 до 4 л на 100 декалитров купажа [7]. Содержание дубильных веществ (танинов) в коньячных спиртах зависит от условий выдержки и при выдержке в дубовых бочках, как правило, не превышает 1,0 г/л [1, 8]. Модельные растворы, содержащие танины и колер, готовили в мерных колбах на 50 мл, в каждую из которых вносили раствор Т и раствор К в количествах, указанных в таблице 1, и доводили объем раствора в колбе до метки дистиллированной водой, моделируя таким образом разбавление в 50 раз в соответствии с методикой. Результаты представлены в таблице 1.

Полученные результаты свидетельствуют, что для раствора № 1, в котором содержится только танин, экспериментально полученное значение удовлетворительно

Таблица 1. Показатели модельных растворов для определения содержания дубильных веществ и полученные результаты

Table 1. Parameters of standardized test solutions for tannin determination and obtained results

Показатель	Раствор					
Показатель	1	2	3	4	5	
Объем раствора К, мл	0	1,0	1,0	1,0	1,0	
Объем раствора Т, мл	1,0	0,5	1,0	1,5	0	
Расчетное содержание танинов, г/л	0,01672	0,00836	0,01672	0,02508	0	
Поглощение при 280 нм	0,232	0,650	0,765	0,886	0,482	
Содержание танинов,						
определенное по	0,01685	0,0490	0,0580	0,0674	0,0359	
градуировочному графику, г/л						

¹ Аналогичен сахарному колеру, марка «75/760-02», артикул 018019, изготовитель Südzucker AG, Германия, используется в рецептурах коньяков для придания окраски готовому продукту.

Таблица 2. Содержание дубильных веществ в образцах спиртосодержащих жидкостей
Table 2. Tannin content in samples of alcohol-containing liquids

Показатель	Коньяк «Большой Приз» КВ	Коньяк «Большой Приз» 3-летний	Коньяк «Старый Кенигсберг» 4-летний	Самогон
Реакция с хлоридом	Сине-черное	Сине-черное	Сине-черное	Окраска не
железа (III)	окрашивание	окрашивание	окрашивание	изменилась
Максимум поглощения в УФ-спектре, нм (см. рис. 3)	280	280	280	267
Содержание танинов, определенное спектрофотометрическим методом, г/л	3,04	2,78	1,76	1,00
Содержание дубильных веществ, определенное перманганатометрическим методом, г/л	0,816	0,204	0,136	0,476

согласуется с расчетным, расхождение составляет + 0,8 % отн. Присутствие колера в растворе значительно повышает его оптическую плотность, а следовательно, и содержание танинов, определяемое по интенсивности поглощения в области 280 нм; при этом полученный результат завышен тем больше, чем выше содержание колера по отношению к содержанию танина в растворе. По этой причине спекрофотометрический метод определения концентрации танинов можно применять при анализе коньячных дистиллятов, но не коньяков, в составе которых присутствует сахарный колер.

В действующих в настоящее время в Российской Федерации нормативных документах для коньячной продукции² показатель «содержание дубильных веществ» не нормируется и определяется, как правило, в исследовательских или экспертных целях [1, 2, 8]. В то же время в некоторых странах данный показатель нормируется. Например, в Белоруссии государственным стандартом СТБ 1386-2003 «Коньяки. Общие технические условия» установлена норма для «массовой концентрации дубильных веществ» - не менее 0,15 г/л для трех-, четырех- и пятилетних коньяков и не менее 0,3 г/л для коньяков групп КВ, КВВК, КС, ОС. Следует отметить, что методика измерений (МВИ.МН 2667-2007) по определению содержания дубильных веществ в коньяках и коньячных спиртах, действующая в республике Беларусь, включена в перечень Учитывая обозначенные выше проблемы, для выявления в коньячной продукции соединений, источником которых является древесина дуба, и оценки их количества представляется целесообразным использование в экспертной практике комбинации методов, включающих химическое тестирование, регистрацию спектров в УФ-области, определение содержания дубильных веществ перманганатометрическим методом.

В таблице 2 приведены полученные в ФБУ Саратовская ЛСЭ Минюста России результаты исследования образцов спиртосодержащих жидкостей – коньяков и самогона. Согласно информации на этикетке в коньяках присутствовал краситель – сахарный колер.

В образцах коньяков при химическом тестировании по реакции с хлорным железом установлено наличие танинов. В УФ-спектрах коньяков присутствует характерный максимум при 280 нм. Содержание танинов, определенное двумя различными методами, значительно различалось в пробах трех исследованных коньяков.

При этом в литературе приводятся следующие данные: содержание танинов в коньячных спиртах различного срока вы-

стандартов, содержащих правила и методы исследований (испытаний) и измерений, в том числе правила отбора образцов, предусмотренные техническим регламентом Таможенного союза «О безопасности пищевой продукции» (ТР ТС 021/2011)³, в том числе и для оценки (подтверждения) соответствия продукции.

 $^{^2}$ ГОСТ 31732-2014 «Коньяк. Общие технические условия». М.: Стандартинформ, 2015. 8 с.; ГОСТ Р 56547-2015 «Российское качество. Коньяки особые. Общие технические условия». М.: Стандартинформ, 2016. 6 с.

 $^{^3}$ Технический регламент Таможенного союза ТР TC 021/2011 «О безопасности пищевой продукции»; утв. решением Комиссии Таможенного союза от 9 декабря 2011 г. № 880.

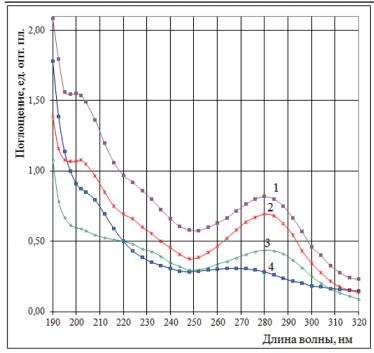


Рис. 3. УФ-спектры спиртосодержащих жидкостей (разведение 1 : 50): № 1 – коньяк «Большой Приз» КВ, № 2 – коньяк «Большой Приз» 3-летний, № 3 – коньяк «Старый Кенигсберг» 4-летний, № 4 – самогон

Fig. 3. UV absorption spectra of alcohol-containing liquids (dilution 1:50): 1 – brandy «Big Prize» VSOP; 2 – brandy «Big Prize» Superior; 3 – brandy «Old Koenigsberg» aged 4 years; 4 – moonshine

держки составляет 0,05–0,53 г/л [1, с. 183]; содержание дубильных веществ в коньячных дистиллятах – 0,2–2,7 г/л [2, с. 133]: верхнее значение диапазона приведено для дистиллятов 30–36-летней выдержки; содержание дубильных веществ в коньяках – 0,1–0,7 г/л [8]. Таким образом, содержание танинов, определенное в образцах коньяков спектрофотометрическим методом (1,76–3,04 г/л) завышено; более достоверны результаты, полученные перманганатометрическим методом.

Следует подчеркнуть важность спектрофотометрического метода для регистра-

СПИСОК ЛИТЕРАТУРЫ

- 1. Скурихин И.М. Химия коньяка и бренди. М.: ДеЛиПринт, 2005. 296 с.
- 2. Оселедцева И.В. Научное обоснование и развитие методологии контроля качества коньячных дистиллятов и коньяков: дис. ... докт. техн. наук. Краснодар, 2017. 437 с.
- 3. Беляева Л.Д., Козинер Е.Д. Криминалистическое исследование спиртосодержащих жидкостей. Научно-методическое пособие для экспертов, следователей и судей. М.: РФЦСЭ, 2008. 241 с.
- 4. Сисакян Н.М., Евстигнеев В.Б., Егоров И.А. Спектрофотометрическая оценка вин и коньяков // Биохимия виноделия. 1948. Сб. 2. С. 69–85.

ции и анализа УФ-спектров окрашенных спиртосодержащих жидкостей. Данный метод позволяет выявлять грубые подделки под коньяк при подкрашивании спиртов чаем, жженым сахаром, кофе [2], использовании различных настоев и экстрактов. В таблице 2 приведены данные для образца самогона, по внешнему виду представлявшего собой жидкость красновато-коричневого цвета. В УФ-спектре этого самогона максимум поглощения был при 267 нм (рис. 3, кривая № 4), что характерно при подкрашивании чаем. Жидкость имела слабощелочную среду $(pH \approx 7.5)$, очевидно поэтому при проведении химического тестирования на наличие танинов качественная реакция не прошла, т. к. в щелочных растворах фенолов реакция не удается [5]. Наличие и количество дубильных веществ (танинов чая) было установлено перманганатометрическим методом.

Выводы

При решении диагностических и идентификационных задач в экспертизах коньячной продукции в рамках исследования соединений фенольной природы целесообразным представляется комплексный подход, включающий ряд методик: химическое тестирование на наличие танинов, регистрацию и анализ спектра в УФ-области, количественное определение дубильных веществ перманганатометрическим методом.

REFERENCES

- 1. Skurikhin I.M. Chemistry of cognac and brandy. Moscow: DeLiPrint, 2005. 296 p. (In Russ.).
- Oseledtseva I.V. Scientific justification and development of methodology of quality control of cognac distillates and cognacs: Doctoral thesis (Technical). Krasnodar, 2017. 437 p. (In Russ.).
- Belyaeva L.D., Koziner E.D. Criminalistic research of alcohol-containing liquids: scientific and methodical manual for experts, investigators and judges. Moscow: RFCFS, 2008. 241 p. (In Russ.).
- Sisakyan N.M., Evstigneev V.B., Egorov I.A. Spectrophotometric assessment of wines and cognacs. Biochemistry of winemaking = Biokhimiya vinodeliya. 1948. Issue 2. P. 69–85. (In Russ.).

- Полюдек-Фабини Р., Бейрих Т. Органический анализ: Руководство по анализу орган. соединений, в том числе лекарств. веществ / Перевод с нем. А.Б. Томчина. Л.: Химия: Ленингр. отд-ние, 1981. 622 с.
- 6. Методы технохимического контроля в виноделии / Под ред. В.Г. Гержиковой. Симферополь: Таврида, 2002. 259 с.
- 7. Глазунов А.И., Царану И.Н. Технология вин и коньяков. М.: Агропромиздат, 1988. 342 с.
- Черкашина Ю.А. Идентификация коньяков с применением органолептического анализа и физико-химических методов: определение хроматических показателей, дубильных веществ и показателя рН // Вестник Казанского технологического университета. 2011.
 № 7. С. 198–204.

ИНФОРМАЦИЯ ОБ АВТОРЕ

Казанцева Ирина Леонидовна – д. т. н., заместитель начальника по основной деятельности ФБУ Саратовская ЛСЭ Минюста России, государственный судебный эксперт; e-mail: kazantsevalL@rambler.ru.

- Pohloudek-Fabini R., Beyrich Th. Organic analysis: The guide to the analysis of organic compounds, including medicinal substances. Translated from German by A.B. Tomchin. Leningad: Chemistry: Leningrad office, 1981. 622 p. (In Russ.).
- Gerzhikova V.G. (ed.) Methods of technical and chemical control in winemaking. Simferopol: Taurida, 2002. 259 p. (In Russ.).
- Glazunov A.I., Tsaranu I.N. Technology of wines and cognacs. Moscow: Agropromizdat, 1988. 342 p. (In Russ.).
- Cherkashina Yu.A. Identification of cognacs with application of the organoleptic analysis and physical and chemical methods: definition of chromatic indicators, tannins and indicator pH. Bulletin of the Kazan technological university = Vestnik Kazanskogo tekhnologicheskogo universiteta. 2011. No 7. P. 198–204. (In Russ.).

ABOUT THE AUTHOR

Kazantseva Irina Leonidovna – Doctor of Engineering, Deputy Head of Core Operations, Saratov Forensic Science Laboratory of the Russian Ministry of Justice, State Forensic Examiner; e-mail: kazantsevalL@rambler.ru.